Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37110727

RESUMO

Orally-active anticancer small molecules targeting the PD-1/PD-L1 immune checkpoint are actively searched. Phenyl-pyrazolone derivatives with a high affinity for PD-L1 have been designed and characterized. In addition, the phenyl-pyrazolone unit acts as a scavenger of oxygen free radicals, providing antioxidant effects. The mechanism is known for the drug edaravone (1) which is also an aldehyde-reactive molecule. The present study reports the synthesis and functional characterization of new molecules (2-5) with an improved anti-PD-L1 activity. The leading fluorinated molecule 5 emerges as a potent checkpoint inhibitor, avidly binding to PD-L1, inducing its dimerization, blocking PD-1/PD-L1 signaling mediated by phosphatase SHP-2 and reactivating the proliferation of CTLL-2 cells in the presence of PD-L1. In parallel, the compound maintains a significant antioxidant activity, characterized using electron paramagnetic resonance (EPR)-based free radical scavenging assays with the probes DPPH and DMPO. The aldehyde reactivity of the molecules was investigated using 4-hydroxynonenal (4-HNE), which is a major lipid peroxidation product. The formation of drug-HNE adducts, monitored by high resolution mass spectrometry (HRMS), was clearly identified and compared for each compound. The study leads to the selection of compound 5 and the dichlorophenyl-pyrazolone unit as a scaffold for the design of small molecule PD-L1 inhibitors endowed with antioxidant properties.


Assuntos
Antioxidantes , Receptor de Morte Celular Programada 1 , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Dimerização , Transdução de Sinais , Aldeídos
2.
Biomed Hub ; 8(1): 1-9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938364

RESUMO

Introduction: The quest for small molecule inhibitors of the PD-1/PD-L1 checkpoint continues in parallel to the extensive development of monoclonal antibodies directed against this immune checkpoint. Drug screening strategies are being set up to identify novel PD-L1 inhibitors. Methods: A virtual screening based on molecular docking with the PD-L1 protein dimer has been performed to identify a new binder. Binding of the identified ligand to PD-L1 has been validated experimentally using a microscale thermophoresis (MST) assay. The cellular effect of the compound was evidenced using a fluorescence resonance energy transfer (FRET) assay based on activation of tyrosine phosphatase SHP-2. Results: We have identified the potent Wnt/ß-catenin inhibitor KYA1797K as a weak PD-L1 binder. Molecular docking suggested that the compound can bind to the interface of a PD-L1 dimer, with a geometry superimposable to that of the reference PD-L1 inhibitor BMS-202. The atypical 2-thioxo-4-thiazolidinone motif of KYA1797K, derived from the natural product rhodanine, plays a major role in the interaction with PD-L1. Binding of KYA1797K to recombinant hPD-L1 was validated experimentally, using MST. The drug was found to bind modestly but effectively to hPD-L1. The FRET assay confirmed the weak capacity of KYA1797K to interfere with the activation of SHP-2 upon its interaction with human PD-1. Discussion: Collectively, the data show that KYA1797K could function as a weak modulator of the PD-1/PD-L1 checkpoint. This effect may contribute, at least partially, to the reported capacity of the ß-catenin inhibitor to downregulate PD-L1 in cancer cells. The work also underlines the interest to further consider the rhodanine moiety as a chemical motif for the design of new PD-L1 binders.

3.
Sci Immunol ; 7(78): eade5686, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36459543

RESUMO

Cytokines interact with their receptors in the extracellular space to control immune responses. How the physicochemical properties of the extracellular space influence cytokine signaling is incompletely elucidated. Here, we show that the activity of interleukin-2 (IL-2), a cytokine critical to T cell immunity, is profoundly affected by pH, limiting IL-2 signaling within the acidic environment of tumors. Generation of lactic acid by tumors limits STAT5 activation, effector differentiation, and antitumor immunity by CD8+ T cells and renders high-dose IL-2 therapy poorly effective. Directed evolution enabled selection of a pH-selective IL-2 mutein (Switch-2). Switch-2 binds the IL-2 receptor subunit IL-2Rα with higher affinity, triggers STAT5 activation, and drives CD8+ T cell effector function more potently at acidic pH than at neutral pH. Consequently, high-dose Switch-2 therapy induces potent immune activation and tumor rejection with reduced on-target toxicity in normal tissues. Last, we show that sensitivity to pH is a generalizable property of a diverse range of cytokines with broad relevance to immunity and immunotherapy in healthy and diseased tissues.


Assuntos
Interleucina-2 , Neoplasias , Humanos , Fator de Transcrição STAT5 , Linfócitos T CD8-Positivos , Citocinas , Concentração de Íons de Hidrogênio
4.
Cancers (Basel) ; 14(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884428

RESUMO

Monoclonal antibodies targeting the PD-1/PD-L1 immune checkpoint have considerably improved the treatment of some cancers, but novel drugs, new combinations, and treatment modalities are needed to reinvigorate immunosurveillance in immune-refractory tumors. An option to elicit antitumor immunity against cancer consists of using approved and marketed drugs known for their capacity to modulate the expression and functioning of the PD-1/PD-L1 checkpoint. Here, we have reviewed several types of drugs known to alter the checkpoint, either directly via the blockade of PD-L1 or indirectly via an action on upstream effectors (such as STAT3) to suppress PD-L1 transcription or to induce its proteasomal degradation. Specifically, the repositioning of the approved drugs liothyronine, azelnidipine (and related dihydropyridine calcium channel blockers), niclosamide, albendazole/flubendazole, and a few other modulators of the PD-1/PD-L1 checkpoint (repaglinide, pimozide, fenofibrate, lonazolac, propranolol) is presented. Their capacity to bind to PD-L1 or to repress its expression and function offer novel perspectives for combination with PD-1 targeted biotherapeutics. These known and affordable drugs could be useful to improve the therapy of cancer.

5.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887019

RESUMO

The review highlights how protein-protein interactions (PPIs) have determining roles in most life processes and how interactions between protein partners are involved in various human diseases. The study of PPIs and binding interactions as well as their understanding, quantification and pharmacological regulation are crucial for therapeutic purposes. Diverse computational and analytical methods, combined with high-throughput screening (HTS), have been extensively used to characterize multiple types of PPIs, but these procedures are generally laborious, long and expensive. Rapid, robust and efficient alternative methods are proposed, including the use of Microscale Thermophoresis (MST), which has emerged as the technology of choice in drug discovery programs in recent years. This review summarizes selected case studies pertaining to the use of MST to detect therapeutically pertinent proteins and highlights the biological importance of binding interactions, implicated in various human diseases. The benefits and limitations of MST to study PPIs and to identify regulators are discussed.


Assuntos
Ensaios de Triagem em Larga Escala , Proteínas , Fenômenos Biofísicos , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligação Proteica , Proteínas/química , Temperatura
6.
Mov Disord ; 37(8): 1761-1767, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708213

RESUMO

BACKGROUND: Pathogenic variants in the LRRK2 gene are a common monogenic cause of Parkinson's disease. However, only seven variants have been confirmed to be pathogenic. OBJECTIVES: We identified two novel LRRK2 variants (H230R and A1440P) and performed functional testing. METHODS: We transiently expressed wild-type, the two new variants, or two known pathogenic mutants (G2019S and R1441G) in HEK-293 T cells, with or without LRRK2 kinase inhibitor treatment. We characterized the phosphorylation and kinase activity of the mutants by western blotting. Thermal shift assays were performed to determine the folding and stability of the LRRK2 proteins. RESULTS: The two variants were found in two large families and segregate with the disease. They display altered LRRK2 phosphorylation and kinase activity. CONCLUSIONS: We identified two novel LRRK2 variants which segregate with the disease. The results of functional testing lead us to propose these two variants as novel causative mutations for familial Parkinson's disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/genética
7.
Molecules ; 27(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630791

RESUMO

Small molecules targeting the PD-1/PD-L1 checkpoint are actively searched to complement the anticancer arsenal. Different molecular scaffolds have been reported, including phenyl-pyrazolone derivatives which potently inhibit binding of PD-L1 to PD-1. These molecules are structurally close to antioxidant drug edaravone (EDA) used to treat amyotrophic lateral sclerosis. For this reason, we investigated the capacity of five PD-L1-binding phenyl-pyrazolone compounds (1-5) to scavenge the formation of oxygen free radicals using electron spin resonance spectroscopy with DPPH/DMPO probes. In addition, the reactivity of the compounds toward the oxidized base 5-formyluracil (5fU) was assessed using chromatography coupled to mass spectrometry and photodiode array detectors. The data revealed that the phenyl-pyrazolone derivatives display antioxidant properties and exhibit a variable reactivity toward 5fU. Compound 2 with a N-dichlorophenyl-pyrazolone moiety cumulates the three properties, being a potent PD-L1 binder, a robust antioxidant and an aldehyde-reactive compound. On the opposite, the adamantane derivative 5 is a potent PD-L1 binding with a reduced antioxidant potential and no aldehyde reactivity. The nature of the substituent on the phenyl-pyrazolone core modulates the antioxidant capacity and reactivity toward aromatic aldehydes. The molecular signature of the compound can be adapted at will, to confer additional properties to these PD-L1 binders.


Assuntos
Antineoplásicos , Pirazolonas , Aldeídos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Antígeno B7-H1/metabolismo , Fluoruracila , Receptor de Morte Celular Programada 1
8.
Eur J Med Chem ; 236: 114343, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429911

RESUMO

Immuno-therapy has become a leading strategy to fight cancer. Over the past few years, immuno-therapies using checkpoint inhibitor monoclonal antibodies (mAbs) against programmed death receptor 1 (PD-1) and programmed death ligand 1 (PD-L1) have demonstrated improved survival compared with chemotherapy. We describe the microwave-assisted synthesis and the characterization of an innovative series of synthetic compounds endowed with nanomolar activity against PD-L1. The properties of the compounds were characterized using several biophysical techniques including microscale thermophoresis (MST) and fluorescence resonance energy transfer (FRET) measurements. A few small molecules demonstrated a high affinity for human PD-L1, potently disrupted the PD-L1:PD-1 interaction and inhibited Src homology region 2 domain-containing phosphatase (SHP2) recruitment to PD-1. More than 30 molecules from the pyrazolone family have been synthesized and 5 highly potent "PD-L1 silencing compounds" have been identified, based on in vitro measurements. Structure-activity relationships have been defined and ADME properties were evaluated. The phenyl-pyrazolone unit offers novel perspectives to design PD-L1-targeting agents, potentially useful to combat cancer and other pathologies implicating the PD-1/PD-L1 checkpoint.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Pirazolonas , Antígeno B7-H1 , Humanos , Ligantes , Receptor de Morte Celular Programada 1 , Pirazolonas/farmacologia
9.
J Exp Clin Cancer Res ; 41(1): 110, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346305

RESUMO

BACKGROUND: CD44 is a multifunctional membrane glycoprotein. Through its heparan sulfate chain, CD44 presents growth factors to their receptors. We have shown that CD44 and Tropomyosin kinase A (TrkA) form a complex following nerve growth factor (NGF) induction. Our study aimed to understand how CD44 and TrkA interact and the consequences of inhibiting this interaction regarding the pro-tumoral effect of NGF in breast cancer. METHODS: After determining which CD44 isoforms (variants) are involved in forming the TrkA/CD44 complex using proximity ligation assays, we investigated the molecular determinants of this interaction. By molecular modeling, we isolated the amino acids involved and confirmed their involvement using mutations. A CD44v3 mimetic peptide was then synthesized to block the TrkA/CD44v3 interaction. The effects of this peptide on the growth, migration and invasion of xenografted triple-negative breast cancer cells were assessed. Finally, we investigated the correlations between the expression of the TrkA/CD44v3 complex in tumors and histo-pronostic parameters. RESULTS: We demonstrated that isoform v3 (CD44v3), but not v6, binds to TrkA in response to NGF stimulation. The final 10 amino acids of exon v3 and the TrkA H112 residue are necessary for the association of CD44v3 with TrkA. Functionally, the CD44v3 mimetic peptide impairs not only NGF-induced RhoA activation, clonogenicity, and migration/invasion of breast cancer cells in vitro but also tumor growth and metastasis in a xenograft mouse model. We also detected TrkA/CD44v3 only in cancerous cells, not in normal adjacent tissues. CONCLUSION: Collectively, our results suggest that blocking the CD44v3/TrkA interaction can be a new therapeutic option for triple-negative breast cancers.


Assuntos
Neoplasias da Mama , Receptores de Hialuronatos , Fator de Crescimento Neural , Receptor trkA , Animais , Neoplasias da Mama/genética , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Fator de Crescimento Neural/farmacologia , Isoformas de Proteínas , Receptor trkA/metabolismo
10.
Cells ; 11(6)2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35326469

RESUMO

The Leucine Rich Repeat Kinase 2 (LRRK2) gene is a major genetic determinant of Parkinson's disease (PD), encoding a homonymous multi-domain protein with two catalytic activities, GTPase and Kinase, involved in intracellular signaling and trafficking. LRRK2 is phosphorylated at multiple sites, including a cluster of autophosphorylation sites in the GTPase domain and a cluster of heterologous phosphorylation sites at residues 860 to 976. Phosphorylation at these latter sites is found to be modified in brains of PD patients, as well as for some disease mutant forms of LRRK2. The main aim of this study is to investigate the functional consequences of LRRK2 phosphorylation or dephosphorylation at LRRK2's heterologous phosphorylation sites. To this end, we generated LRRK2 phosphorylation site mutants and studied how these affected LRRK2 catalytic activity, neurite outgrowth and lysosomal physiology in cellular models. We show that phosphorylation of RAB8a and RAB10 substrates are reduced with phosphomimicking forms of LRRK2, while RAB29 induced activation of LRRK2 kinase activity is enhanced for phosphodead forms of LRRK2. Considering the hypothesis that PD pathology is associated to increased LRRK2 kinase activity, our results suggest that for its heterologous phosphorylation sites LRRK2 phosphorylation correlates to healthy phenotypes and LRRK2 dephosphorylation correlates to phenotypes associated to the PD pathological processes.


Assuntos
Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Fosforilação/fisiologia , Transdução de Sinais
11.
Cancers (Basel) ; 13(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830899

RESUMO

The HER2 receptor and its MUC4 mucin partner form an oncogenic complex via an extracellular region of MUC4 encompassing three EGF domains that promotes tumor progression of pancreatic cancer (PC) cells. However, the molecular mechanism of interaction remains poorly understood. Herein, we decipher at the molecular level the role and impact of the MUC4EGF domains in the mediation of the binding affinities with HER2 and the PC cell tumorigenicity. We used an integrative approach combining in vitro bioinformatic, biophysical, biochemical, and biological approaches, as well as an in vivo study on a xenograft model of PC. In this study, we specified the binding mode of MUC4EGF domains with HER2 and demonstrate their "growth factor-like" biological activities in PC cells leading to stimulation of several signaling proteins (mTOR pathway, Akt, and ß-catenin) contributing to PC progression. Molecular dynamics simulations of the MUC4EGF/HER2 complexes led to 3D homology models and identification of binding hotspots mediating binding affinity with HER2 and PC cell proliferation. These results will pave the way to the design of potential MUC4/HER2 inhibitors targeting the EGF domains of MUC4. This strategy will represent a new efficient alternative to treat cancers associated with MUC4/HER2 overexpression and HER2-targeted therapy failure as a new adapted treatment to patients.

12.
Front Cell Dev Biol ; 9: 740550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722523

RESUMO

An extensive body of literature suggested a possible role of the microtubule-associated protein Tau in chromatin functions and/or organization in neuronal, non-neuronal, and cancer cells. How Tau functions in these processes remains elusive. Here we report that Tau expression in breast cancer cell lines causes resistance to the anti-cancer effects of histone deacetylase inhibitors, by preventing histone deacetylase inhibitor-inducible gene expression and remodeling of chromatin structure. We identify Tau as a protein recognizing and binding to core histone when H3 and H4 are devoid of any post-translational modifications or acetylated H4 that increases the Tau's affinity. Consistent with chromatin structure alterations in neurons found in frontotemporal lobar degeneration, Tau mutations did not prevent histone deacetylase-inhibitor-induced higher chromatin structure remodeling by suppressing Tau binding to histones. In addition, we demonstrate that the interaction between Tau and histones prevents further histone H3 post-translational modifications induced by histone deacetylase-inhibitor treatment by maintaining a more compact chromatin structure. Altogether, these results highlight a new cellular role for Tau as a chromatin reader, which opens new therapeutic avenues to exploit Tau biology in neuronal and cancer cells.

13.
Eur J Med Chem ; 226: 113835, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509860

RESUMO

The Hippo pathway is involved in organ size control and tissue homeostasis by regulating cell growth, proliferation and apoptosis. It controls the phosphorylation of the transcription co-activator YAP (Yes associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif) in order to control their nuclear import and their interaction with TEAD (Transcriptional Enhanced Associated Domain). YAP, TAZ and TEADs are dysregulated in several cancers making YAP/TAZ-TEAD interaction a new emerging anti-cancer target. We report the synthesis of a set of trisubstituted pyrazoles which bind to hTEAD2 at the interface 2 revealing for the first time a cryptic pocket created by the movement of the phenol ring of Y382. Compound 6 disrupts YAP/TAZ-TEAD interaction in HEK293T cells and inhibits TEAD target genes and cell proliferation in MDA-MB-231 cells. Compound 6 is therefore the first inhibitor of YAP/TAZ-TEAD targeting interface 2. This molecule could serve with other pan-TEAD inhibitors such as interface 3 ligands, for the delineation of the relative importance of VGLL vs YAP/TAZ in a given cellular model.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Descoberta de Drogas , Pirazóis/farmacologia , Fatores de Transcrição de Domínio TEA/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Fatores de Transcrição de Domínio TEA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
14.
Sci Rep ; 10(1): 6539, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286387

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Sci Rep ; 9(1): 16678, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723153

RESUMO

The MUC4 membrane-bound mucin is a large O-glycoprotein involved in epithelial homeostasis. At the cancer cell surface MUC4 interacts with ErbB2 receptor via EGF domains to promote cell proliferation and migration. MUC4 is highly regarded as a therapeutic target in pancreatic cancer as it is not expressed in healthy pancreas, while it is neoexpressed in early preneoplastic stages (PanINs). However, the association/dissociation constant of MUC4-ErbB2 complex is unknown. Protein-protein interactions (PPIs) have become a major area of research in the past years and the characterization of their interactions, especially by biophysical methods, is intensively used in drug discovery. To characterize the MUC4-ErbB2 interaction, we used MicroScale Thermophoresis (MST), a powerful method for quantitative protein interaction analysis under challenging conditions. We worked with CHO cell lysates containing either the transmembrane ß subunit of MUC4 (MUC4ß) or a truncated mutant encompassing only the EGF domains (MUC4EGF3+1+2). MST studies have led to the characterization of equilibrium dissociation constants (Kd) for MUC4ß-ErbB2 (7-25 nM) and MUC4EGF3+1+2/ErbB2 (65-79 nM) complexes. This work provides new information regarding the MUC4-ErbB2 interaction at the biophysical level and also confirms that the presence of the three EGF domains of MUC4 is sufficient to provide efficient interaction. This technological approach will be very useful in the future to validate small molecule binding affinities targeting MUC4-ErbB2 complex for drug discovery development in cancer. It will also be of high interest for the other known membrane mucins forming oncogenic complexes with ErbBs at the cancer cell surface.


Assuntos
Mucina-4/metabolismo , Oncogenes , Receptor ErbB-2/metabolismo , Difusão Térmica , Animais , Células CHO , Proliferação de Células , Cricetulus , Humanos , Ligação Proteica , Termodinâmica
16.
Arch Pharm (Weinheim) ; 352(5): e1800227, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30947375

RESUMO

Unprecedented triazinyl-isoxazoles were afforded via an effective cycloaddition reaction between nitrile oxides and the scarcely described 2-ethynyl-4,6-dimethoxy-1,3,5-triazine as dipolarophile. The biological evaluation of the newly synthesized compounds showed that the inhibition of human farnesyltransferase by zinc complexation could be improved with triazine-isoxazole moieties. The replacement of the isoxazole unit by a pyrrolidin-2-one was detrimental to the inhibitory activity while the pyrrolidin-2-thione derivatives conserved the biological potential. The potential of selected compounds to disrupt protein farnesylation in Chinese hamster ovary (CHO) cells transfected with pEGFP-CAAX was also evaluated.


Assuntos
Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Isoxazóis/farmacologia , Pirrolidinonas/farmacologia , Triazinas/farmacologia , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Farnesiltranstransferase/metabolismo , Humanos , Isoxazóis/química , Estrutura Molecular , Pirrolidinonas/química , Relação Estrutura-Atividade , Triazinas/química
17.
Cancers (Basel) ; 10(5)2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738494

RESUMO

Intrinsically disordered protein YAP (yes-associated protein) interacts with TEADs transcriptional factors family (transcriptional enhancer associated domain) creating three interfaces. Interface 3, between the Ω-loop of YAP and a shallow pocket of TEAD was identified as the most important TEAD zone for YAP-TEAD interaction. Using the first X-ray structure of the hYAP50⁻71-hTEAD1209⁻426 complex (PDB 3KYS) published in 2010, a protein-protein interaction inhibitors-enriched library (175,000 chemical compounds) was screened against this hydrophobic pocket of TEAD. Four different chemical families have been identified and evaluated using biophysical techniques (thermal shift assay, microscale thermophoresis) and in cellulo assays (luciferase activity in transfected HEK293 cells, RTqPCR in MDA-MB231 cells). A first promising hit with micromolar inhibition in the luciferase gene reporter assay was discovered. This hit also decreased mRNA levels of TEAD target genes.

18.
Sci Rep ; 7(1): 17623, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247197

RESUMO

The characterization of protein interactions has become essential in many fields of life science, especially drug discovery. Microscale thermophoresis (MST) is a powerful new method for the quantitative analysis of protein-protein interactions (PPIs) with low sample consumption. In addition, one of the major advantages of this technique is that no tedious purification step is necessary to access the protein of interest. Here, we describe a protocol using MST to determine the binding affinity of the PD-1/PD-L1 couple, which is involved in tumour escape processes, without purification of the target protein from cell lysates. The method requires the overexpression of fluorescent proteins in CHO-K1 cells and describes the optimal conditions for determining the dissociation constant. The protocol has a variety of potential applications in studying the interactions of these proteins with small molecules and demonstrates that MST is a valuable method for studying the PD-1/PD-L1 pathway.


Assuntos
Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Termodinâmica , Animais , Fenômenos Biofísicos , Células CHO , Linhagem Celular , Cricetulus , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia
19.
Eur J Med Chem ; 123: 834-848, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27543878

RESUMO

Based on a previous study and in silico molecular docking experiments, we have designed and synthesized a new series of ten 5-Alkoxy-N-3-(3-PhenoxyPhenyl)-1,3,4-Oxadiazol-2(3H)-one derivatives (RmPPOX). These molecules were further evaluated as selective and potent inhibitors of mammalian digestive lipases: purified dog gastric lipase (DGL) and guinea pig pancreatic lipase related protein 2 (GPLRP2), as well as porcine (PPL) and human (HPL) pancreatic lipases contained in porcine pancreatic extracts (PPE) and human pancreatic juices (HPJ), respectively. These compounds were found to strongly discriminate classical pancreatic lipases (poorly inhibited) from gastric lipase (fully inhibited). Among them, the 5-(2-(Benzyloxy)ethoxy)-3-(3-PhenoxyPhenyl)-1,3,4-Oxadiazol-2(3H)-one (BemPPOX) was identified as the most potent inhibitor of DGL, even more active than the FDA-approved drug Orlistat. BemPPOX and Orlistat were further compared in vitro in the course of test meal digestion, and in vivo with a mesenteric lymph duct cannulated rat model to evaluate their respective impacts on fat absorption. While Orlistat inhibited both gastric and duodenal lipolysis and drastically reduced fat absorption in rats, BemPPOX showed a specific action on gastric lipolysis that slowed down the overall lipolysis process and led to a subsequent reduction of around 55% of the intestinal absorption of fatty acids compared to controls. All these data promote BemPPOX as a potent candidate to efficiently regulate the gastrointestinal lipolysis, and to investigate its link with satiety mechanisms and therefore develop new strategies to "fight against obesity".


Assuntos
Digestão/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Mucosa Gástrica/metabolismo , Absorção Intestinal/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Oxidiazóis/farmacologia , Estômago/efeitos dos fármacos , Animais , Cães , Cobaias , Humanos , Cinética , Lipase/antagonistas & inibidores , Lipase/química , Lipase/metabolismo , Masculino , Simulação de Acoplamento Molecular , Conformação Proteica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA